Improvement of error-free splitting for accurate matrix multiplication
نویسندگان
چکیده
منابع مشابه
Reproducible and Accurate Matrix Multiplication
Due to non-associativity of floating-point operations and dynamic scheduling on parallel architectures, getting a bit-wise reproducible floating-point result for multiple executions of the same code on different or even similar parallel architectures is challenging. In this paper, we address the problem of reproducibility in the context of matrix multiplication and propose an algorithm that yie...
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولOn-line soft error correction in matrix-matrix multiplication
Soft errors are one-time events that corrupt the state of a computing system but not its overall functionality. Soft errors normally do not interrupt the execution of the affected program, but the affected computation results cannot be trusted any more. A well known technique to correct soft errors in matrix–matrix multiplication is algorithm-based fault tolerance (ABFT). While ABFT achieves mu...
متن کاملA Bootstrap Method for Error Estimation in Randomized Matrix Multiplication
In recent years, randomized methods for numerical linear algebra have received growing interest as a general approach to large-scale problems. Typically, the essential ingredient of these methods is some form of randomized dimension reduction, which accelerates computations, but also creates random approximation error. In this way, the dimension reduction step encodes a tradeoff between cost an...
متن کاملSHORT-SS4: Error-Free Transformation of Matrix Multiplication by A Posteriori Verification
This paper is concerned with accurate computations for matrix multiplication. An error-free transformation of matrix multiplication is developed by the authors. It transforms a product of two floatingpoint matrices to a sum of several floating-point matrices by using only floating-point arithmetic. This transformation is useful not only for accurate matrix multiplication but also for interval e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2015
ISSN: 0377-0427
DOI: 10.1016/j.cam.2015.04.010